*总理在今年的*工作报告中指出:“实施大数据发展行动,加强新一代人工智能研发应用,在医疗、养老、教育、文化、体育等多领域推进‘互联网+’。”当前,发展教育大数据已成为推进我国当前教育领域深化改革和创新发展的战略选择。
党的十九大报告提出,努力让每个孩子都能享有公平而有质量的教育。在教育领域实施大数据发展行动中,好的教育大数据怎样才能挖掘出来,又该进行怎样的分析处理?大数据怎样为教育助力使其更加公平优质?对此,记者对相关专家和从业人员进行了深入采访。
访谈嘉宾:
戚万学 曲阜师范大学党委书记、中国教育大数据研究院院长
甘健侯 云南师范大学民族教育信息化教育部重点实验室常务副主任
方海光 首都师范大学教育技术系教授、远程教育研究所所长
李 超 学堂在线总裁
好的教育大数据怎样才能挖掘出来
记者:当前,“大数据”成了一个时髦名词。好的教育大数据是什么样?教育数据数量越多越好吗?
戚万学:大数据之“大”,我们一般理解为“数量”规模之大,通常数据样本量越大,越有利于对数据进行多维的聚类、聚合、聚集分析,更有利于“扫描”和“透视”看似毫无价值、毫无关联数据之中的相关性、逻辑性直至规律性,从而可以进行评价和趋势预测。大数据之“大”,还有一种理解是处理技术的“大”。对于教育大数据而言,需要数据的不断累积和增多,同时也需要相应大数据挖掘分析技术不断提高。教育大数据的价值在于帮助决策,一般而言,好的教育大数据要具备精确、完整、可靠性、视觉化呈现、存取性高等特征。
甘健侯:教育大数据之“大”并非只是数量之大,更为强调的是数据蕴含的“价值”之大。实质上,教育大数据并不是越多越好。对于数据科学家来说,重要的不是得到最多的数据,而是看通过哪些数据可以得出真正有价值的结果。教育大数据大致分为教学资源类大数据、教育教学管理大数据、教与学行为大数据、教育教学评估大数据四类。教育大数据并非包括所有数据,因为教育活动过程中也会产生大量无意义的“噪声”数据,需要根据教育的应用目的进行数据过滤和“清洗”,为后期深度挖掘和分析做准备。因此,好的教育大数据一定是科学、客观、准确、有用的,要把数据与人的差异化有机结合起来。
方海光:教育大数据并非越多越好,教育大数据要能服务教育发展、具有教育目的性,而非盲目地囊括一切数据。教育大数据是以业务应用导向为评判标准的,即应用是检验教育大数据的唯一标准。好的教育大数据可以在提升教育质量、促进教育公平、实现个性化学习、优化教育资源配置、辅助教育科学决策等方面发挥重要作用。
记者:教育大数据丰富多样、种类繁多,在海量的教育数据中,怎样挖掘出好的教育大数据?
戚万学:教育过程中每分每秒都在产生大量丰富、复杂且多样的信息,这些信息必须经过深入的挖掘才能转化成可以运用的教育数据。如何挖掘教育大数据一直是摆在教育研究者与*面前的重要课题,也是一个难题。好的教育大数据是凭借数据挖掘者敏锐的洞察力与先进的挖掘技术来获得的。好的教育大数据必须有好的理念、好的问题意识、有趣的研究设计,然后才是好的挖掘技术。在数据挖掘过程中,应该避免唯技术化和工具化倾向。
李超:大数据挖掘不能离开教育实践,无论是在线教育还是课堂教学,我们都不能为了抓数据而去抓数据,而要从贴近教师的教学需要、满足学生的学习需要出发,真正以学习者为中心去获取大数据。非结构化的教育数据如图片文本,需要通过充分利用好现在的信息技术手段,通过人工智能、模式分析、行为分析的了解和认知科学的发展、教育技术的最新理念,把它们转换成结构化的教育数据。更关键的是要能够把这些非结构化数据,通过模型在教育过程中去指导、帮助教师以及指导整个系统开发,然后再去获取数据优化模型,通过往复的过程以后,可以真正实现科学化指导。
甘健侯:好的教育大数据需要对教育数据进行深度挖掘。这个过程中需要综合运用数学统计、机器学习、数据挖掘和人工智能等多交叉领域的技术和方法,对教育大数据进行处理和分析。通过数据建模,发现学习者学习结果与学习内容、学习资源和教学行为等变量的相关关系,来预测学习者未来的学习趋势,促进学习者有效学习的发生。
方海光:好的教育大数据也是重要的教育资源之一。为使数据资源物尽其用,当前最需要的就是挖掘能够促进共建共享的教育大数据。共建共享不仅有利于加速教育大数据产品的应用和开发,也有利于降低成本优化体验。对于半结构化或非结构化的数据,可以采用自然语言理解、模式识别等人工智能手段进行信息抽取,还可以通过专家人为地进行协同标签处理,这样可以将其转化为结构化数据。对于杂质较多的数据,可以在数据挖掘时进行数据清洗。对于实时产生的数据可以使用自动获取效率优先的方式来采集数据。
丰富多样的教育大数据如何处理
记者:在云存储和云计算的基础上,如何利用信息技术等手段对非结构化和半结构化教育数据进行有效处理?
戚万学:非结构化数据转化为结构化数据,是大数据产生效力的重要途径。常见的教育大数据,都是非结构化的类型,能直接进行数据分析的结构化数据反而较少。举例而言,教师的教学视频、学生的作业等都属于非结构化的数据。要解决非结构化数据带来的挑战,就是利用信息技术进行数据转化。在数据分析方面,目前已经有相当成熟的分析方式,包括传统统计学的回归分析、类别分析和决策树等,真正面临的挑战反而是数据的清洗及去敏的处理,关键是确保数据与数据产生者之间的匿名性,即在经过数据清洗后,无法通过数据去辨识出该数据所属者的信息。如此,才能确保学生个人的信息不外流,符合一般教学及研究的伦理守则。
李超:在教育大数据的挖掘和分析上,在整个教育教学过程中,现有的手段能够收集到的信息还不够。在大量占有这些数据的时候,我们一定要利用人工智能或者最新的神经网络深度学习等技术,基于实践数据去进行处理总结和分析,同时要把这些结果和总结分析反哺到教育过程中去。
甘健侯:教育数据的处理可分为教育数据的获取与抽取、教育数据的存储与管理、教育数据的分析与挖掘三个阶段。在云存储和云计算的基础上,传统关系数据库无论从描述能力上还是从管理数据的规模上,都无法应对非结构化和半结构化的数据管理要求,因此如何利用信息技术建立有效的非结构化和半结构化教育数据管理平台是关键。首先,针对半结构化和非结构化数据存储和分析的需求,建立统一的数据模型。其次,利用云存储和云计算,构建分布式与并行处理模型和架构,支持高度并行化与可扩展性,从而保证教育大数据的高效处理。再其次,支持查询语言与数据可视化功能,满足用户对教育大数据进行访问与分析的接口需要,以提升教育数据处理的有效性。
现在的家长压力普遍很大,在升学的压力下不得不把孩子送去各类的辅导机构。为此,有家长呼吁:要全面禁止课
2021年08月03日 11:56课外报班,每个家长心里都有自己的想法:“我家孩子数学不行,是不是得补补啊?”又或是“别的孩子都报辅导
2019年11月11日 22:18课外辅导是一种较为常见的课外学习活动,也是一种组织化的校外活动形式。特别是在中国的基础教育阶段,学校
2019年11月11日 22:19有人说,校外培训机构是校内教育的完善和补充,然而也造成学生更多的学习压力和家长们的经济负担。社会上一
2019年11月11日 22:13其实这是一个系统性问题,家长由于大部分只有一个孩子,经验非常有限,也不做教育方面的研究,所以很多时候
2019年11月11日 22:08教育培训行业,在我的认知里是从2010年1月29日开始的。那时我刚刚进入新东方天津学校。面试、试讲、
2019年11月11日 22:00打开大学录取通知书,是高考考生们梦想成真的瞬间。同样的,在大洋彼岸的小岛国新加坡,每一年也有一群又一
2019年11月12日 13:14不经历一次小升初,我还以为九年义务教育没我啥事。小升初让我明白,家长需要经历的最严峻的义务可能来了,
2019年11月12日 13:05有很多家长们反应说,不知道为什么孩子对一些数学法则总是张冠李戴很是让人头疼,总是感觉是因为太调皮,所
2019年11月12日 13:02今日寄语"让孩子爱上阅读,必将成为你这一生最划算的教育投资"——毕淑敏前段时间看
2019年11月12日 12:59教育部:推动有条件的地方优化学前教育班额和生师比
时间:2024年11月12日教育部:严格幼儿园教师资质条件,把好教师入口关
时间:2024年11月12日教育部:教职工存在师德师风问题、侵害幼儿权益要依法严肃追究责任
时间:2024年11月12日教育部:教师存在师德师风问题,损害幼儿身心健康的,要依法追究责任
时间:2024年11月12日教育部:2023年全国普惠性幼儿园覆盖率达90.8%
时间:2024年11月12日怎么将图片压缩到指定体积?1个方法小白也能上手
时间:2024年02月27日电脑如何把png改成jpg格式?修改图片格式的方法
时间:2024年02月27日如何把图片kb变小?电脑上调整照片大小kb
时间:2024年02月27日怎样把照片处理成需要的大小?图片压缩指定大小的方法
时间:2024年02月27日视频做成二维码查看?多格式视频二维码生成器的使用方法
时间:2024年02月27日