当前位置:大学路 > 高考教育 >高考资讯 >正文

数据挖掘专业就业方向 大数据的就业方向?

更新:2023年07月13日 15:33 大学路

今天,大学路小编为大家带来了数据挖掘专业就业方向 大数据的就业方向?,希望能帮助到广大考生和家长,一起来看看吧!数据挖掘专业就业方向 大数据的就业方向?

学习数据科学的就业方向有哪些

学习数据科学的就业方向有很多,以下这些是比较热门的职业:

1、数据分析师。数据分析师侧重于利用统计学、数学等知识进行数据挖掘,日常的主要工作内容为收集数据、清洗数据、然后做一些分析或可视化处理,对编程氏念语言有一定的要求,如R,Python,Javascript,C/C++,SQL等。

2. 商业分析师。商业分析师和纯数据科学家都是使用数据的专家,但工作内容是有比较大差别的。通常,商业分析师要对某专业领域具有深入的了解和深刻的认识,商业敏感度高,擅长于从某一领域的数据中挖掘信息,以此评估过去、现在和未来可能的经营业绩。确定最有效的分析模型和途径,为商业用户提供和解释解决方案。

3.数据工程师。作为一个新兴的职业类型, 数据工程师更倾向于掌握 “战术层面” 的具体数据技能,专注于使数据可用并能够在生产环境中对数据进行处理,如具体的编程语言、操作系统与数据库等;而数据科学家更倾向于“战略层面脊销”的数据技能,如数据分析、数据挖掘、统计分析、机器学习等。

想要了解更多关于数据分析师就业方向的信息,可以咨询一下CDA认证机构歼野困。CDA是大数据和人工智能时代面向国际范围全行业的数据分析专业人才职业简称。全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA职业道德和行为准则》新规范,发挥着自身数据专业能力,推动科技创新进步,助力经济持续发展。

大数据都有什么就业方向?

大数据专业就业方向

大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。
大数据专业介绍

计算机科学与技术(数据科学与大数据技术方向)主要培养大数据科学与工程领域的复合型高级技术人才。毕业生具有信息科学、管理科学和数据科学基础知识与基本技能,掌握大数据科学与技术所需要的计算机、网络、数据编码、数据处理等相关学科的基本理论和基本知识,熟练掌握大数据采集、存储、处理与分析、传输与应用等技术,具备大数据工程项目的系统集成能力、应用软件设计和开发能力,具有一定的或兄大数据科学研究能力及数据科学家岗位的基本能力与素质。毕业后能从事各行业大数据分析、处理、服务、开发和利用工作,大数据系统集成与管理维护等各方面工作,亦可从事大数据研究、咨询、教育培训工作。
大数据(big data)是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据*。大数据有五大特点,即大量(Volume)、高速(Velocity)、多样(Variety)、低价值密度(Value)、真实性(Veracity)。它并没有统计学的抽样方法,只是观察和追踪发生的事情。

大数据的用法倾向于预测分析、用户行为分析或某些其他高级数据分析方法的使用。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。[1]

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据*,具有海量的数据规模、快速的数据流转宽扒、多样的数据类型和价值密度低四大特征。[2]

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。[3]

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对衫巧袭海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。[4]

大数据的就业方向?

该专业毕业的学生可以去对大数据处理有需求的各行业部门,如银行、商业机构、电信、电商公司等入职,也可以从事数据采集、管理、分析与挖掘方面的工作。
1、大数据工程师:从事数据采集与管理工作,需要较强的IT专业能力,这个岗位也有很多别名,如hadoop工程师、javag工程师(大数据)、ETL工程师等,关键看其岗位职责和技能慧宽需求,别前世亮看名字。应届生月薪平均在10k以上。
2、大数据分析师:从事数据资源开发与利用,主要工作是数据分析、和数据挖掘,能出图表、出报告。需要数量使用一些分析工具,比如spss、SAS,如果能使用编程的方式灵活进行数据分析,就更好了,比如python或R.这个岗位也有别名,比如数据分析师,商务智能分析师。应届生月薪大约在8k以上。
3、算法工程师:从事机器学习,构建人工智能模型,也称机器学习工程师,在商业领域,也有称为商务智能工程师的返亮。该岗位需要很强的数学分析能力和编程能力,是三个岗位中的金领职位,也是月薪最高的职位,应届生月薪目前在15K以上。

在国内学习数据挖掘就业前景如何?

数据挖掘是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。数据挖掘主要侧重解决四类问题:分类、聚类、关联和预测,就是定量、定性,数据挖掘的重点在寻找未知的模式与规律。输出模型或规则,并且可相应得到模型得分或标签,模型得分如流失概率值、总和得分、相似度、预测值等,标签如高中低价值用户、流失与非流失、信用优良中差等。主要采用决策树、神经网络、关联规则、聚类分析等统计学、人工智能、机器学习等方法进行挖掘蠢判。综合起来,数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策,所以数据分析(狭义)与数据挖掘构成广义的数据分析。这些内容与数据分析都是不一样的。

应用及就业领域

当前数据挖掘应用主要集中在电信(客户分析),零售(*预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。

当前它能解决的问题典型在于:数据库营销(Database Marketing)、客户群体划分(Customer Segmentation &Classification)、背景分析(Profile Analysis)、交叉*(Cross-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。

职业薪酬

就目前来看,和大多IT业的职位一样,数据挖掘方面的人才在国内的需求工作也是低端饱和,高端紧缺。从BAT的招聘情况来看,数据挖掘领域相对来说门槛还是比较高的,但是薪酬福利也相胡档渗对来说比较好,常见的比如腾讯、阿里都会给到年薪20W+。而厉害的资深算法专家年薪百万也是常有的事情,所以大家在算法方面还是大有可能。另外随着金融越来越互联网化,大量的算法工程师会成为以后互联网金融公司紧缺的人才。

想要了解更多数据挖掘相关信息可以咨询CDA数据分析师

CDA(Certified Data Analyst),亦称“CDA数据分析师”,指在互联网、零售、金融、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能*业务报告、提供决策的新型数据分析人才。CDA秉承着总结凝练先进的商业数据分析实践为使命,明晰各类数据分析从业者的知识体系为职责,旨在加强全球范围内正规化、科学化、专业化的大数据及数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速裤脊发展。

“CDA数据分析师认证”是一套专业化,科学化,国际化,系统化的人才考核标准,分为CDA LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ,涉及金融、电商、医疗、互联网、电信等行业大数据及数据分析从业者所需要具备的技能,符合当今全球大数据及数据分析技术潮流,为各界企业、机构提供数据分析人才参照标准。

“CDA数据分析师培训”是根据CDA数据分析师认证体系标准而设立的一套专业化、科学化、系统化的学习方案。培训内容不仅包含认证标准中的技能知识要求,还有着企业环境中的真实项目和案例,能满足不同层次的学员需求,使学员能学到真本事技能并能够落地运用,实现商业价值。

想要了解更多关于数据分析师的问题,可以咨询一下 CDA认证中心 。全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA职业道德和行为准则》新规范,发挥着自身数据专业能力,推动科技创新进步,助力经济持续发展。

以上就是大学路整理的数据挖掘专业就业方向 大数据的就业方向?相关内容,想要了解更多信息,敬请查阅大学路。

免责声明:文章内容来自网络,如有侵权请及时联系删除。
与“数据挖掘专业就业方向 大数据的就业方向?”相关推荐

每周推荐




最新文章

热门高校 更多




联系我们 - 课程中心
  鲁ICP备18049789号-7

2020大学路版权所有 All right reserved. 版权所有

警告:未经本网授权不得转载、摘编或利用其它方式使用上述作品